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A measurement of pulse separations for photoelectrons in the 
case of a Lorentz spectral linet 

H C KELLY and J G BLAKE 
Lyman Laboratory, Department of Physics, Harvard University, Cambridge, 
Mass 02138, USA 

MS received 21 September 1971 

Abstract. Measurements of the width of a Lorentz spectral line using a digital 
photoelectron correlation device are compared with measurements made on the same 
gaussian light source by a pulse separation detector. The agreement of the two 
measurements over a wide range of count rates provides a test of recent theories of 
pulse separation measurements. 

Early measurements of spectral linewidths using photon correlation techniques 
involved devices which determine coincidence rates between photons detected during 
two time intervals separated by a fixed time (Hanbury-Brown and Twiss 1954, Rebka 
and Pound 1957). Recently, pulse autocorrelators have been introduced which 
measure joint counting rates over a range of delay times simultaneously (Jakeman er al. 
1968, Chen and Polonsky-Ostrowsky 1969). 

Equivalent information can be obtained from experiments which simply measure 
the distribution of separation times between individual photons. The width of a 
mercury vapour line was measured with such a device by Scar1 (1968). In his experi- 
ment the count rates were so small that the probability of detecting two consecutive 
photons separated by a time T (which we shall call P(T)) could be approximated by 
the joint counting rate at time intervals centred at  t = 0 and t = IT. This approxima- 
tion is good only when the probability of measuring a count during the time interval 
T i s  small (Glauber 1968, Barakat and Glauber 1971). Another approximation, good 
when T i s  small compared with a coherence time, has been used by Bendjaballah and 
Perrot (1971) to study nonthermal gaussian fields. In this letter we use the exact 
analysis of pulse separation statistics introduced by Glauber to enable us to interpret 
experiments in which these approximations are no longer valid. 

Using standard photon counting techniques it can be shown that 

q l  = 1 
P ( T ) d T =  w 

where w is the average count rate and Q(s, T) is the single time generating function 
defined by 

m 

Q(3,  T )  = 2 (1 -s)"f'(n, T )  (2) 
n=O 

and P(n, T )  is the probability of measuring n photons during a time T. 
Work supported in part by ARPA. 
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When the incident light is gaussian, has a Lorentz spectrum of width I?, and the 
detector is small compared with a coherence area, then Q(s, T) and P( t )  can be calcu- 
lated exactly (Jakeman and Pike 1968) 

4 Y(s) ez 
(1 + Y(S))~ exp(Y(s)T) - (1 - Y(s)I2 exp( - Y(s)T) Q(s, TI = (3) 

where 
r = m  

W 
U = -  r 
Y(s) = (1 +2US)1'2. 

Corrections to (3) for detectors of finite size have also been obtained (Kelly 1972a, 
Jakeman et a1 1970). 

In the limiting case where TU < 1,  we can use equations (1) and (3) to show that 

P(T) = w(l  +e-2z). (4) 
Equation (4) also describes the joint counting rate at time intervals centred at t = 0 
and t = T, provided that each interval is short compared with l/r. This is the func- 
tional form used by Scarl. 

In a previous paper (Kelly and Blake 1971) we have provided a direct experimental 
verification of (3) over a large range of U and T. Here we extend that verification by 
using relation (1). 
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Figure 1. Apparatus for measuring pulse separations. 

In our experiments (see figure 1) we measure pulse separations by sending the out- 
put of a photomultiplier (Bendix 754) through a discriminator (EG and G TDlOI/N 
in LLT mode) and into a time to amplitude converter (EG and G TH200A/N modified 
to increase its full scale time). The output pulses from the time to amplitude converter 
are sorted and recorded by a pulse height analyser (HP 5400 MCA in PHA mode). The 
light illuminating the photomultiplier was produced by scattering coherent laser light 
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with a wavelength of 4880A from an aqueous suspension of polystyrene spheres 
0.091 pm in diameter. This produced light with a Lorentz spectrum, the linewidth 
I’ = (3.52 +0.05) x IO3 s-l. Strictly speaking, this light is ‘pseudogaussian’ due to 
the finite coherence time of the incident field, but the photocounting statistics will be 
the same as those for a true gaussian field (Picinbono and Rosseau 1970). 

c 
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I 

Figure 2. Theoretical (full curves) and experimental (open circles) plots of P(T) 
against T .  

The results of the experiments are shown in figure 2. The full curves, calculated by 
using equations (1) and (3), show good agreement with our measurements. We believe 
that the departure at  high count rates and small T is probably due to the finite pulse 
widths used by our equipment, and to the necessity of providing a ‘dead time’ while 
our equipment analyses each event. These results indicate that pulse separation 
measurements can yield information similar to the autocorrelation measurements if 
the results are correctly interpreted (Kelly 1972b). 

The authors wish to thank Professors G Holton and R Barakat of Harvard whose 
generous advice helped to make the present work possible. 
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K shell electron wavefunctions in complex atoms 

P T GREENLAND and J M IRVINE 
Department of Theoretical Physics, University of Manchester, 
Manchester M13 9PL, UK 

MS received 7 October 197 1 

Abstract. A simple procedure for obtaining Is electron wavefunctions in complex 
atoms is presented which takes into account many body, relativistic and finite 
nuclear size effects. 

In recent years there have been a number of solutions to the Hartree-Fock problem 
in complex atoms. Perhaps the most widely used solutions are those given by Herman 
and Skillman (1963, to be referred to as HS). HS give numerical solutions to the Hartree- 
Fock equations for most atoms in the periodic table. These solutions are obtained in 
the Slater free electron approximation (Slater 1960). Finite nuclear size effects are 
ignored and relativistic corrections to the single particle energies are obtained in first 
order perturbation theory. 

In heavy atoms the inner shell electron wavefunctions (in particular those of the 
1 s shell) may be substantially modified by the finite nuclear size and relativistic effects. 
These modifications are of significance in the calculation of electron capture cross 
sections. We report here on our results for K shell electrons based upon the HS com- 
pilations. 

Suppose H is the full relativistic single particle Hamiltonian for the I s  electronic 
state Y. Then Y is the proper eigenfunction to use in calculating electron capture 
cross sections. The Hamiltonian H, and eigenfunctions Y, of the relativistic hydro- 
genic problem (nucleus of charge Z )  are well known. We may construct a Foldy- 
Wouthuysen (FW) transformation Fo (Rose 1961) such that CD, is the classical l imit  
of y?, 

@o = FoYo. (1) 

CD =&(Do ( 2 )  

Similarly we can define F such that CD is the classical limit of Y. Then if 


